Mexicana descubre el ‘talón de Aquiles’ del Covid-19

Mexicana descubre el ‘talón de Aquiles’ del Covid-19

Para la Dra. Monica Olvera de la Cruz, originaria de Acapulco, Guerrero, la pandemia de covid-19 le llegó, a través de uno de sus hermanos que aún vive en México, quien se infectó.

Fue así que la Dra. Olvera decidió desde su experiencia en la electroestática, emprender una investigación a nivel computacional que le permitió identificar que el virus SARS CoV-2 sí tiene “un talón de Aquiles”.

Lo encontró al identificar las interacciones electroestáticas del virus que lo hacen unirse a las células humanas, por lo que ahora, se concentra en desarrollar una molécula que pueda bloquear esa acción y con ello, inhibir la infección.

“No encontré la cura, yo encontré una cosa científica que da una dirección. Lo que hicimos fue buscar otra manera de vulnerar, de reducir la atracción entre la proteína spike (del SARS CoV-2) y el receptor humano donde se pega el virus”.

Para comprender su trabajo, explicó que en las células humanas, el receptor del virus es la enzima convertidora de angiotensina 2 (ACE2) y se encuentra en las células epiteliales nasales faríngeas, el primer contacto con el virus, y también en las células del riñón, corazón, cerebro y células de los conductores de aire más bajos y gastrointestinales, lo que facilita la falla de órganos humanos por la infección del SARS-CoV-2.

El SARS CoV-2 se adhiere al ACE2 de las células humanas, mediante el llamado Dominio de unión al receptor (RBD) que se encuentra en la proteína Spike, los picos que dan forma de corona al virus.

La primera fase de su investigación buscó encontrar la diferencie entre el virus SARS CoV de 2003, con el nuevo coronavirus SARS CoV-2, responsable de la pandemia de covid-19.

“La diferencia eran unos grupos que se llaman polybasic cleavage, donde cleavage quiere decir ‘escisiones, divisiones’ y polybasic quiere decir que son de carga positiva.Estos grupos estaba muy alejados del lugar donde la proteína spike se pega al receptor de las células humanas, entonces dijimos: si los mutamos, descubrimos que efectivamente estos grupos que están alejados donde se pega al receptor humano, modificaba muchísimo esa interacción”.

“Atacar” el dominio de unión al receptor del virus es sumamente complejo, debido a que está escondido dentro de la spike, pero la distancia a la que se encuentran los sitios de la división polibásica permite encontrar “una nueva manera de tratar de atacar, de hacer más vulnerable el virus”.

Destacó que bloquear el sitio de escisión puede actuar como un tratamiento profiláctico viable que disminuye la capacidad del virus para infectar a los humanos, ya que demostró que las mutaciones distales de la proteína spike del SARS-CoV-2 afectan la transmisibilidad del virus

Salir de la versión móvil